Universidade do Estado do Rio Grande do Norte Faculdade de Ciências Exatas e Naturais-FANAT Departamento de Física Programa de Pós-Graduação em Física

Mackson Matheus França Nepomuceno

Sobre a orientação dos eixos de rotação das estrelas em aglomerados abertos

Mossoró

Maio de 2013

Mackson Matheus França Nepomuceno

Sobre a orientação dos eixos de rotação das estrelas em aglomerados abertos

Dissertação apresentada ao Programa de Pós-graduação em Física como parte dos requisitos para obtenção do título de MESTRE EM FÍSICA

Orientador: Prof. Dr. José Ronaldo Pereira da Silva

Mossoró

Maio de 2013

Catalogação da Publicação na Fonte. Universidade do Estado do Rio Grande do Norte.

Nepomuceno, Mackson Matheus Franca Sobre a orientação dos eixos de rotação das estrelas em aglomerados abertos. / Mackson Matheus Franca Nepomuceno. – Mossoró, RN, 2013. 58f. Orientador(a): Prof. Dr. Jose Ronaldo Pereira da Silva Dissertação (Mestrado em Física). Universidade do Estado do Rio Grande do Norte. Programa de Pós-graduação em Física. 1. Aglomerados Galacticos Abertos (AGA). 2. Velocidades rotacionais -Análise. 3. Rotação das estrelas. I. Silva, Jose Ronaldo Pereira da. II.Universidade do Estado do Rio Grande do Norte. IV. Título. UERN/BC

Bibliotecária: Jocelania Marinho Maia de Oliveira CRB 15 / 319

Mackson Matheus França Nepomuceno

Sobre a orientação dos eixos de rotação das estrelas em aglomerados abertos

Dissertação apresentada ao Programa de Pós-graduação em Física como parte dos requisitos para obtenção do título de MESTRE EM FÍSICA

Aprovada em 24/05/2013

Banca Examinadora

Prof. Dr. José Ronaldo Pereira da Silva Orientador

Prof. Dr. Daniel Brito de Freitas Examinador externo

Prof. Dr. Raimundo Silva Júnior Examinador interno

Dedicado à

Sra. Maria Jurací Pereira Nepomuceno, minha eterna Vovó Jurinha.

Dedicado à

Sra. Maria Jurací Pereira Nepomuceno, minha eterna Vovó Jurinha.

Sumário

Li	sta d	le Tabelas	ix
Li	sta d	le Figuras	x
1	Inti	rodução	1
	1.1	Velocidade de rotação projetada	1
	1.2	Formação de estrelas em aglomerados e o alinhamento dos eixos	
		rotacionais	4
		1.2.1~ Um resumo sobre a formação de estrelas e aglomerados	4
		1.2.2 Processos de alteração no alinhamento dos eixos rotacionais	6
	1.3	Mecânica estatística não-extensiva	8
	1.4	A Função de distribuição de rotação generalizada	10
2	A a	mostra	13
3	Res	ultados e discussões	16
	3.1	As funções de distribuição acumuladas empíricas	16
	3.2	A relação entre $V \sin i$ e a idade de aglomerados $\ldots \ldots \ldots \ldots$	18
	3.3	O comportamento das FDAE de Coma Ber e NGC 0752 \ldots .	20
	3.4	A relação entre $V \sin i$ e o índice entrópico $\ldots \ldots \ldots \ldots \ldots$	22
	3.5	A relação entre o índice entrópico q e a idade dos aglomerados $\ .$.	22
	3.6	O índice entrópico q e a evolução do momentum angular $\ .$	26
4	Cor	nclusões e perspectivas	28

A Base de dados	30
Referências Bibliográficas	41

Lista de Tabelas

2.1	Principais informações sobre os aglomerados. N é a quantidade de	
	dados de Vsin i. $\langle Vsin i \rangle$ representa o valor médio da velocidade	
	rotacional projetada das estrelas do aglomerado	14
2.2	Principais informações sobre os grupos. Os valores de $\langle q \rangle$ foram	
	obtidos fazendo a média aritmética entre os aglomerados. Enquanto	
	que q foi obtido formando um só conjunto de dados de todos os	
	aglomerados do grupo.	15
A.1	Dados de rotação para αPer	30
A.2	Dados de rotação para Blanco 1	31
A.3	Dados de rotação para Coma Ber	32
A.4	Dados de rotação para as Híades	33
A.5	Dados de rotação para IC 2602	34
A.6	Dados de rotação para NGC 0752	35
A.7	Dados de rotação para Praesepe	36
A.8	Dados de rotação para NGC 2682	37
A.9	Dados de rotação para NGC 6475	38
A.10	Dados de rotação para as Plêiades	39
A.11	Continuação dos dados de rotação para as Plêiades	40

Lista de Figuras

1.1	Ilustração de uma estrela rotacionando como um corpo sólido com	
	velocidade angular $\vec{\omega}$. O eixo z define a linha de visada, que está	
	inclinada em relação ao eixo rotacional por um ângulo i. A com-	
	ponente da velocidade de rotação verdadeira no eixo z, V_z , é de-	
	nominada velocidade rotacional projetada sobre a linha de visada,	
	$V \sin i$	2
1.2	Posição dos agrupamentos estelares na Via Láctea. Fonte: http://w	
	ww2.astro.psu.edu/users/cpalma/astro10/Images	5
3.1	Função de Distribuição Acumulada Empírica das velocidades de	
	rotação, Vsin i, para os aglomerados (painéis da esquerda) e dos	
	grupos (painéis da direita). As curvas de melhor ajuste são repre-	
	sentadas pelas linhas sólidas. O número entre parênteses é a idade	
	do aglomerado ou a idade média do grupo (direita)	17
3.2	Distribuição da velocidade rotacional média, $\langle V \sin i \rangle$, das estre-	
	las em cada aglomerado como função de suas respectivas idades.	
	Círculos abertos representam Coma Ber (à esquerda) e NGC 0752	
	(à direita). As linhas representam a lei de freamento com α =	
	2,0 e A = 0,041(kms ⁻¹) ⁻¹ Gyr ⁻¹ (pontilhada) e α = 2,0 e A =	
	$0,052(kms^{-1})^{-1}Gyr^{-1}$ (tracejada)	19
3.3	Distribuição do índice entrópico q em função da rotação $\langle V {\rm sin} i \rangle$	
	das estrelas em cada aglomerado. Os círculos abertos representam	
	Coma Ber (à esquerda) e NGC 0752 (à direita)	23

25

Agradecimentos

Utilizo-me deste espaço para reconhecer os esforços empenhados por aqueles que desejam o meu crescimento pessoal e profissional. Através deste sentimento, me deram a força, o conforto e o estímulo necessários para a elaboração deste trabalho.

Devo iniciar meus agradecimentos com a base de minha vida: minha família.

- À minha avó paterna, Maria Jurací (*in memoriam*), pelas inestimáveis lições de vida e pelo amor incondicional a mim dedicado;
- À minha Mãe, Maria Santa, que me mostra diariamente que a sinceridade é uma grande virtude e que uma boa relação também é construída com diferenças de pensamentos. Seu amor é essencial em minha vida;
- Ào meu "Paidrasto", Raimundo Lacerda, que além de toda carga intelectual me mostrou o lado humano por trás de um grande homem;
- À minha noiva, Vanessa França, que sempre esteve ao meu lado em todos os momentos. Alegrando os momentos ruins e deixando ainda mais alegres os momentos felizes;
- Ào meu irmão, Mackenzie Luís, que, apesar da distância, me apoia e me ama;
- Àos meus sobrinhos, Erick, Raí e Cecília, que, apesar da pouca idade, conseguem iluminar, com a inocência da criança, os mais escuros dos dias;

- À minha única avó ainda viva, Severina, que sempre acreditou e torceu por mim;
- Ào meu Pai e sua mulher, Liverton e Juscilene, que proporcionaram dias menos doloridos no fim da vida de Vovó Jurinha;
- Àos meus primos, tias, "irmãs tortas", paternos ou maternos, agradeço pelos momentos felizes que me fizeram recarregar as forças para seguir em frente;
- Àos meus "irmãos", Arthur e Jerry, que apesar da inexistência da relação sanguínea, comprovam que o afeto, confiança e respeito não são características somente familiares.

Continuo agradecendo aos que conheci através da profissão, mas que aprendi a gostar e respeitar com a convivência.

- Ào Prof. Dr. José Ronaldo, não só pela orientação acadêmica, mas também pelos vários conselhos de vida. Em especial ao esforço, gratuito e reconhecidamente sincero, em me ver aprovado no concurso prestado para professor da UFERSA;
- Ào Prof. Dr. Bráulio Batista pela coorientação neste trabalho e os diversos bons debates nas aulas de Evolução e Interiores Estelares;
- Ào Prof. Dr. Francisco Piolho, ou Ohloip Ocix, para os mais íntimos, sem o qual talvez nada disso teria acontecido;
- À todos os professores do departamento de física da UERN que contribuíram de forma direta ou indireta com a minha formação acadêmica e pessoal;
- Àos colegas que fiz não só na minha turma, como nas turmas conviventes do mestrado.

Ainda agradeço:

 À Profa. Valéria Amaral, minha prima, pela revisão gramatical feita neste trabalho;

- Ào Ms. Francisco Silva, pelo esforço em também revisar este trabalho;
- Às amigas Mayara e Isadora pelos incentivos durante a elaboração dos textos finais deste trabalho;
- À CAPES pela bolsa de estudo concedida.

Resumo

Neste trabalho investigamos se o índice entrópico q de Tsallis, obtido da distribuição da rotação estelar, está relacionado com a idade de aglomerados galácticos abertos (AGA). A investigação consiste na análise das velocidades rotacionais, $V \sin i$, de uma amostra de 685 estrelas de 10 AGA's. Observamos que todos os aglomerados de nossa amostra apresentam q > 1 e que a distribuição q*versus* idade do aglomerado apresenta dois regimes, consistindo de uma estabiliazação de q até a idade de 8dex (100Myr) seguido de um decaimento. Observamos também que existe uma tendência geral de correlação entre q e a idade dos aglomerados, tal que q tende para a unidade quando a idade aumenta. Nossos resultados sugerem que as estrelas de aglomerados jovens tendem a apresentar uma orientação preferencial dos seus eixos de rotação e que tal característica é perdida gradualmente, quando o aglomerado fica mais velho.

Abstract

In this paper we have investigated whether the Tsallis entropic index q from the distribution of stellar rotation is correlated with the age of Galactic open clusters (GOCs). The investigation was carried out based on a sample of rotational velocities, $V \sin i$, of 685 stars from 10 GOCs. We have found that all clusters present in our sample have q > 1 and that the distribution q versus cluster age shows two regimes consisting of an relatively slow rise of q until around age 8 dex (100 Myr) followed by a sharp drop. We also have observed that there is a general tendency for a correlation between q and cluster age, such that q tends towards unity when age increases. Our results suggest a scenario in which the stars of younger GOCs have a preferential orientation of their rotation axes and that such a feature can be gradually lost and randomized when the clusters get older.

Capítulo 1 Introdução

A rotação é um fenômeno universal manifestando-se desde os átomos até as galáxias. As estrelas apresentam rotações que vão de valores menores que $10 \, km/s$ (e.g., estrelas do tipo M) até centenas de quilômetros por segundo (e.g., estrelas do tipo Be). A rotação influencia uma grande variedade de fenômenos nas estrelas, tais como os processos de nucleossíntese e mistura convectiva de elementos químicos, formação de campos magnéticos, perda de massa e zona de habitabilidade em sua vizinhança. A principal técnica empregada para medir a rotação é a espectroscopia¹, que usa o alargamento doppler das linhas espectrais da estrela [3]. Essa técnica, entretanto, somente permite medir a componente da rotação projetada sobre a linha de visada, $V \sin i^2$, onde i é o ângulo entre o eixo rotacional e a linha de visada. O ângulo i pode ser determinado apenas em casos específicos como, por exemplo, em sistemas binários (SB) eclipsantes com período orbital inferior a 10 dias (ver [4] e [5]).

1.1 Velocidade de rotação projetada

A despeito da dificuldade de se obter velocidades equatoriais verdadeiras, V, utiliza-se largamente a velocidade de rotação projetada $V \sin i$. O método mais comum para obtenção desta velocidade é através da observação do alargamento das linhas espectrais de uma estrela. Tal alargamento ocorre devido ao

¹Uma visão geral sobre técnicas de medida de rotação pode ser encontrada em [1] e [2].

 $^{^2 \}mathrm{Usaremos}$ a notação sin para representar a função seno, por seu uso já consagrado na literatura.

efeito Doppler da radiação observada na linha de visada. Em outras palavras, a radiação emitida pela região da estrela que se aproxima do observador sofre um desvio para comprimentos de onda menores, o chamado *blue shift*, enquanto que a radiação emitida pela região estelar que se afasta do observador é desviada para comprimentos de onda maiores, o chamado *red shift*, por este processo as linhas espectrais observadas aparecem alargadas.

Figura 1.1: Ilustração de uma estrela rotacionando como um corpo sólido com velocidade angular $\vec{\omega}$. O eixo z define a linha de visada, que está inclinada em relação ao eixo rotacional por um ângulo i. A componente da velocidade de rotação verdadeira no eixo z, V_z , é denominada velocidade rotacional projetada sobre a linha de visada, Vsin i.

O termo para a velocidade de rotação projetada, $V \sin i$, é obtido considerando inicialmente uma estrela como um corpo esférico e rígido, ilustrado na figura 1.1, rotacionando em torno de seu eixo com velocidade angular $\vec{\omega}$. Na figura, o eixo z coincide com a linha de visada, que apresenta uma inclinação em relação ao eixo de rotação definido pelo ângulo *i*. Podemos expressar a velocidade rotacional equatorial \vec{V} como:

$$\vec{V} = \vec{\omega} \times \vec{R},\tag{1.1}$$

3

onde \vec{R} define um ponto na superfície da estrela. Efetuando o produto vetorial obtemos as componentes da velocidade equatorial:

$$V_x = \omega_y R_z - \omega_z R_y \tag{1.2}$$

$$V_y = \omega_z R_x - \omega_x R_z \tag{1.3}$$

$$V_z = \omega_x R_y - \omega_y R_x. \tag{1.4}$$

Percebemos, de acordo com a figura 1.1, que a componente ω_x é nula e a componente ω_y pode ser escrita em função do ângulo *i* na forma $\omega_y = \omega \sin i$, desta forma a componente da velocidade rotacional na linha de visada será:

$$V_z = -R_x \omega \sin i, \tag{1.5}$$

mas, como estamos interessados na velocidade rotacional projetada em função da velocidade equatorial, temos que $|R_x| = R$, logo:

$$V_z = R\omega \sin i, \tag{1.6}$$

ou, simplesmente:

$$V_z = V \sin i. \tag{1.7}$$

De acordo com a equação 1.7 fica claro que a velocidade que observamos é sempre menor ou igual a velocidade rotacional equatorial verdadeira da estrela, devido ao termo sin i que tem como máximo uma unidade. Se por um lado, não temos, na maioria dos casos, a informação sobre a velocidade rotacional verdadeira, por outro lado, temos um grande número de medidas de $V \sin i$ disponíveis. Chandrasekhar & Münch [7] mostraram que, ainda que afetada por um efeito de projeção, podemos inferir a distribuição da velocidade rotacional verdadeira a partir de uma amostra estatisticamente representativa e homogênea de velocidades rotacionais projetadas. Para isso, geralmente é assumido que o eixo de rotação das estrelas é orientado aleatoriamente, isto é: $\langle \sin i \rangle = \pi/4$. Para compreendermos as consequências desse pressuposto precisamos entender como se dá a formação destas estrelas e os vários estágios da evolução do momentum angular estelar. Um histórico sobre os estudos da rotação estelar e processos para obtenção da velocidade rotacional pode ser encontrado em Levenhagen e Künzel [6].

1.2 Formação de estrelas em aglomerados e o alinhamento dos eixos rotacionais

As estrelas, em sua grande maioria, não se encontram isoladas no universo. Agrupam-se em aglomerados de estrelas formadas de uma mesma nuvem de poeira e gás. Estes agrupamentos podem ser encontrados de duas formas: aglomerados fechados, ou globulares, e aglomerados abertos. O primeiro tipo apresenta uma interação gravitacional muito forte entre seus integrantes e geralmente está localizado no halo da galáxia apresentando uma quantidade de estrelas entre 10^5 e 10^6 membros. Já aglomerados abertos, são encontrados no disco galáctico e apresentam interação gravitacional menor que os aglomerados globulares, apresentando um número da ordem de 10 a 10^4 membros. A figura 1.2 ilustra o posicionamento dos aglomerados em nossa galáxia.

1.2.1 Um resumo sobre a formação de estrelas e aglomerados

Poeira e gás do meio interestelar se aglomeram formando grandes nuvens de matéria. Estas nuvens são os principais berçários de estrelas e são constituídas basicamente de hidrogênio na forma molecular diatômica H₂. Um crescimento na densidade de um determinado ponto desta nuvem implica em um aumento na interação entre as partículas e, consequentemente, um colapso gravitacional sobre um ponto começa a ocorrer. Podemos prever a contração espontânea de uma região da nuvem através do Teorema do Virial, que relaciona a energia potencial

Figura 1.2: Posição dos agrupamentos estelares na Via Láctea. Fonte: http://w ww2.astro.psu.edu/users/cpalma/astro10/Images

gravitacional Ω com a energia E da seguinte forma:

$$E = -\Omega/2. \tag{1.8}$$

Por outro lado, a energia potencial gravitacional de um gás monoatômico com temperatura T, massa M, densidade ρ e massa molecular μ , é dado por:

$$\Omega = \frac{3k_B T M}{\mu m_H} = \int_0^M \frac{Gm}{r} dm, \qquad (1.9)$$

onde k_B é a constante de Boltzmann. Se uma região esférica da nuvem molecular, com massa m e raio r, possuir densidade constante, então a relação abaixo é verdadeira:

$$\rho_m = \rho_M \Rightarrow \frac{m}{\frac{4\pi}{3}r^3} = \frac{M}{\frac{4\pi}{3}R^3} \Rightarrow r = \left(\frac{m}{M}\right)^{1/3} R.$$
(1.10)

Substituindo o valor de r na equação 1.9, obtemos um critério para o colapso

gravitacional que pode ser escrito na forma:

$$M > \frac{5k_B T}{G\mu m_H} R. \tag{1.11}$$

Se isolarmos o valor de R na equação 1.10 encontramos a expressão:

$$M > \left(\frac{3}{4\pi\rho}\right)^{1/2} \left(\frac{5k_BT}{G\mu m_H}\right)^{3/2}.$$
(1.12)

O lado direito da desigualdade acima é denominado de massa de Jeans M_J . O aumento na densidade local ocorre espontaneamente se a massa desta região for maior que a massa de Jeans, $M > M_J$.

Por outro lado, este colpaso também pode ser estimulado por processos externos que alteram o equilíbrio da nuvem, como choque espiral galáctico, colisão com outra nuvem e ondas de choque de supernova[8].

Espontâneo ou estimulado, este processo leva a um aumento na temperatura decorrente da transformação de energia cinética em energia térmica. Uma protoestrela em equilíbrio hidrostático é formada. As camadas mais externas continuam se contraindo até o limite em que a temperatura e pressão são tão altas no núcleo, que este passa a apresentar as condições para que ocorra a fusão nuclear. Este processo gera uma pressão de radiação exercida do centro para a superfície, freando a contração gravitacional e devolvendo o equilíbrio hidrostático ao corpo. A realização de fusão nuclear estabelece o nascimento da estrela.

Neste processo de formação ocorre a transferência de *momentum* angular da nuvem genitora para as novas estrelas formadas.

1.2.2 Processos de alteração no alinhamento dos eixos rotacionais

Desde o início de sua formação, são vários os processos que contribuem para a perda do alinhamento dos eixos rotacionais das estrelas. Normalmente, nuvens moleculares que dão origem as estrelas apresentam regiões com diferentes densidades, resultando num processo caótico de formação estelar e na estratificação do momentum angular original. Durante este processo inicial, o colapso e fragmentação da nuvem também podem contribuir para um certo grau de aleatoriedade do momentum angular das estrelas recém-formadas. Além disso, nos estágios iniciais da formação, as estrelas sofrem alterações no momentum angular devido à interações com seu disco de acreção [11], perda de momentum angular por vento estelar [12] e formação do disco protoplanetário [13]. Em épocas posteriores à formação, espera-se que ocorram encontros gravitacionais, efeito de maré devido ao campo gravitacional galático e nuvens interestelares cruzando o caminho do aglomerado. Além disso, alterações estruturais no momentum de inércia devido à um provável desacoplamento [14] entre o núcleo e a envoltória da estrela, podem desempenhar um papel importante na evolução do momentum angular estelar. Todos esses mecanismos físicos influenciam o momentum angular estelar mais ou menos fortemente e contribuem para tornar a redistribuição dos eixos de rotação das estrelas mais ou menos aleatória com o passar do tempo.

Embora seja muito utilizada na literatura, até o momento não há uma base observacional forte para sustentar a hipótese da aleatoriedade dos eixos rotacionais. Pelo contrário, podemos esperar que a distribuição do momentum angular das estrelas recém-formadas reflitam, por um determinado tempo, o momentum angular da nuvem mãe, que é transferido para estas estrelas durante o processo inical de sua formação. Neste sentido, o trabalho de vant Veer[9] em 1975 sugeriu que as estrelas de aglomerados galáticos abertos, AGA's, mais jovens (idade $< 10^8$ anos) tendem a mostrar uma orientação preferencial dos seus eixos de rotação, e que esta orientação pode ser perdida gradualmente com o tempo. Mais recentemente, Jackson & Jeffries[10] investigaram o alinhamento dos eixos de rotação em estrelas de AGA's jovens e, embora estes autores tenham descoberto que a aleatoriedade dos eixos de rotação é o caso mais provável, não descartaram a possibilidade do alinhamento parcial.

1.3 Mecânica estatística não-extensiva

Em 1988, o físico greco-brasileiro Constantino Tsallis apresentou um trabalho propondo uma generalização para a mecânica estatística de Boltzmann-Gibbs-Shannon. Sua motivação era o fato de que a mecânica estatística estabelecida na época não concordava, em princípio, com alguns sistemas na natureza. Este desacordo ocorria no cerne desta teoria que analisava a energia e entropia dos sistemas desprezando as interações entre seus componentes, isto porque, eram analisadas interações de curto alcance. Podemos citar como exemplo a situação hipotética de dois átomos de hidrogênio, que quando aproximados, apresentam energia total igual à soma da energia associada ao primeiro átomo somada à energia associada ao segundo átomo e, ainda, a energia de ligação entre os dois. A energia de ligação entre os átomos é de curto alcance e se torna insignificante se tomarmos uma grande quantidade de átomos de hidrogênio. Porém, em muitos sistemas naturais existem interações de longo alcance e não desprezíveis. Exemplo são os sistemas que apresentam interação gravitacional, como os aglomerados estelares, onde tais interações entre seus componentes variam com o inverso do quadrado da distância.

As propriedades que atribuímos aos sistemas podem ser classificadas como extensivas ou intensivas. Caso apresentem proporcionalidade com a quantidade de matéria são extensivas. O volume de um corpo depende da quantidade de matéria contida nele, ou seja o volume é uma propriedade extensiva. Por outro lado, se tal propriedade não depender da quantidade de matéria do sistema ela é dita intensiva. Por exemplo, a densidade de um corpo se mantém constante se adicionarmos matéria de forma proporcional ao aumento do volume, deste modo, a densidade é considerada uma propriedade intensiva. É importante saber também que, se uma propriedade é considerada extensiva, consequentemente, ela também é aditiva. Por outro lado, uma propriedade intensiva é também não-aditiva. Tomemos o exemplo da entropia apresentada pela estatística de Boltzmann-Gibbs-Shannon, na forma que considera todos os microestados equiprováveis,

$$S_{BG} = k_B \ln W, \tag{1.13}$$

onde W é a densidade de microestados acessíveis do sistema. Por ser considerada extensiva, logo aditiva, deve obedecer a relação

$$S_{BG}(A+B) = S_{BG}(A) + S_{BG}(B).$$
(1.14)

De acordo com esta definição, no exemplo dos átomos de hidrogênio não poderíamos considerar a energia e a entropia como sendo propriedades extensivas, caso a energia de ligação entre os átomos não fosse desprezível, pois deveria existir um terceiro termo que levasse em conta a interação entre os componentes.

Diante deste cenário, a proposta apresentada por C. Tsallis foi de generalizar a mecânica estatística, para que esta considerasse que, em alguns casos ocorrem interações de longo alcance e, consequentemente, propriedades como a energia interna e a entropia, não são extensivas. Para isso, reescreveu a função exponencial e^x , em uma função *q-exponencial*, que depende do índice entrópico *q*, definida por

$$e_q^x \equiv [1 + (1 - q)x]^{\frac{1}{1 - q}} \tag{1.15}$$

que apresenta como função inversa, a função q-logarítmica, definida por

$$\ln_q x \equiv \frac{x^{1-q} - 1}{1-q},$$
(1.16)

onde q é um número real e denominado índice entrópico do sistema.

Com estas novas ferramentas matemáticas, Tsallis pôde generalizar a relação para a entropia

$$\frac{S_q}{k_B} = \frac{W^{1-q} - 1}{1-q},\tag{1.17}$$

onde S_q é o termo usado para representar a entropia generalizada, que por ser nãoextensiva também é não-aditiva, logo, também pôde generalizar a equação 1.14, acrescentando o termo relacionado à interação entre os componentes do sistema

$$S_q(A+B) = S_q(A) + S_q(B) + (1-q)S_q(A)S_q(B).$$
(1.18)

É interessante notar que, por ser uma generalização e não uma alternativa à estatística de Boltzmann-Gibbs-Shannon, quando tomamos o limite $q \rightarrow 1$, toda a estrutra matemática da teoria original é retomada. Podemos considerar que o valor de q é uma medida da não-extensividade do sistema. Altos valores de q enfatizam as interações de longo alcance entre os componentes do sistema e q pode ser interpretado como um parâmetro de longa memória. Através do índice entrópico também é possível aliarmos aos conceitos de possibilidades e probabilidades o conceito de propensão, que era desconsiderado anteriormente. Propensão seria a tendência a uma parcialidade no sistema. A quantização deste viés se dá através do índice entrópico, ou seja, como na estatística de Boltzmann-Gibbs-Shannon os sistemas são considerados imparciais, quando o valor de q se afasta da unidade representa um viés no sistema.

1.4 A Função de distribuição de rotação generalizada

Com estas novas considerações acerca do tratamento estatístico dos sistemas, a comunidade científica se debruçou à investigar aplicações nas mais diversas áreas. Uma delas é o comportamento da distribuição das velocidades rotacionais de aglomerados estelares. Vários trabalhos (por exemplo, Brown[15]; Chandrasekhar & Münch[7]; Gaigé[16]; Fukuda[17]; Guthrie[18]) verificaram que, a partir de uma amostra de estrelas na vizinhança solar, é possível apontar leis que controlam a distribuição das velocidades rotacionais. Deutsch[24], em 1967, sugeriu que a distribuição de velocidades rotacionais deveria ser do tipo Maxwelliana. Por outro lado, outros trabalhos (por exemplo, Carvalho *et al.*[20],[21],[22] e Soares e Silva[23]) têm mostrado que uma função de distribuição que leva em conta a não-extensividade (ou não-aditividade) da entropia que se aplica a sistemas com interações de longo alcance e memória de longo prazo, é mais apropriada para descrever a distribuição de $V \sin i$. A distribuição obtida por Soares *et. al*[19] através da generalização da função obtida por Deutsch [24], e posteriormente também obtida por Soares e Silva[23] utilizando outras considerações, é dada por:

$$\varphi_q(y) = y \left[1 - (1-q) \frac{y^2}{\sigma_y^2} \right]^{1/(1-q)}$$
(1.19)

onde $y \equiv V \sin i$. O valor de q é obtido a partir da distribuição das velocidades de rotação estelar e σ_y está relacionada com a largura equivalente da distribuição ([19] e [23]). Esta função de distribuição assume que as estrelas giram como um corpo sólido e que a distribuição da energia cinética rotacional deve obedecer a uma equação diferencial não-linear do tipo Bernoulli.

Soares & Silva[23] mostraram que, no contexto do formalismo de Tsallis a relação entre os primeiros momentos da distribuição de $V \sin i \in V$, a saber os valores esperados de $\langle \sin i \rangle$, é uma função de q (ver equações 14 e 15 no trabalho citado). De acordo com esta relação, quando o índice entrópico q aproxima-se da unidade a distribuição dos eixos de rotação estelar se torna aleatória. Neste contexto, o índice q estaria associado ao grau de aleatoriedade da orientação do vetor momentum angular das estrelas, tal que q = 1 corresponderia a uma distribuição completamente aleatória. Assumindo que a distribuição do vetor momentum angular das estrelas nos estágios iniciais de formação refletiria o momentum angular da nuvem progenitora e que tal distribuição poderia se tornar mais aleatória no decorrer do tempo, Soares & Silva[23] propuseram que deveria haver uma correlação entre q e a idade dos AGA's.

No presente trabalho utilizamos uma grande amostra de velocidades de

rotação estelar, $V \sin i$, de AGA's com objetivo de investigar a existência de correlação entre o índice entrópico q, obtidos a partir da distribuição da rotação estelar, e as idades dos aglomerados, como proposto por Soares e Silva [23]. O presente trabalho está organizado da seguinte forma: no próximo capítulo descrevemos os dados da amostra. No terceiro capítulo apresentaremos os resultados e discussões e, por fim, no último capítulo apresentaremos os principais resultados obtidos.

Capítulo 2

A amostra

A amostra analizada consiste de 685 dados de rotação projetada, $V \sin i$, de estrelas simples, que não fazem parte de um sistema binário ou múltiplo, provenientes de 10 AGAs, selecionados a partir do catálogo de velocidades radial e rotacional de Mermilliod, Mayor e Udry[26]. As medidas de rotação projetada, $V \sin i$, foram obtidas com o espectrômentro CORAVEL ([27] e [28]), que utiliza o método de correlação cruzada [29] e tem uma precisão de cerca de 1km/s.

A amostra é composta de estrelas anãs com tipo espectral no intervalo de F5 a K0, que corresponde a um intervalo de massa estelar de 1,4 a $0,8M_{\odot}$, exceto aquelas pertencentes à Híades, cujo parâmetros físicos estão no intervalo de tipo espectral entre F5 e M0, correspondente a uma faixa de massa de 1,4 a 0,5 M $_{\odot}$ [30].

As estrelas em Mermilliod, Mayor & Udry[26] foram seleciondas de diferentes estudos e por isso é necessário considerar a possibilidade de que tal processo introduza efeitos de seleção com respeito à rotação na amostra. IC 2602 merece atenção particular, pois para este aglomerado foram selecionadas apenas velocidades inferiores a 50km/s¹. No entanto, um teste Kolmogorov-Smirnov com nível de significância de 0.05, não revelou diferenças significativas entre os dados de $V \sin i$ da nossa amostra e os obtidos no estudo de Barnes *et al.*[39].

¹O espectrômetro CORAVEL, tem incerteza de 1km/s na medida de velocidades de rotação e consegue medir rotações tão baixas quanto 2km/s. Medidas de velocidade rotacional acima de 50 km/s são dificultadas pelo fato de que a função de correlação cruzada é muito sensível ao alargamento rotacional das linhas espectrais.

Para compor a amostra do presente trabalho selecionamos somente velocidades rotacionais de estrelas simples e indubitávelmente membro dos aglomerados considerados, de acordo com o critério sobre a velocidade radial das estrelas como descrito na Seção 4 de Mermilliod, Mayor & Udry[26], ou seja, estrelas que apresentem velocidades semelhantes à velocidade média das estrelas do aglomerado. Foram rejeitadas as estrelas dos sistemas de binárias espectroscópicas porque suas velocidades rotacionais podem ser afetadas pelo efeito de maré gravitacional ([31] e [36]). Três aglomerados foram excluídos do estudo por não conterem uma quantidade significativa de dados de $V \sin i$ e, por isso, não foi possível elaborar suas funções de distribuição acumuladas. Esses aglomerados são IC 2391, NGC 7092 e NGC 1976, que contém, respectivamente, 11, 12 e 13 dados de rotação estelar. Os aglomerados sob análise neste estudo estão listado na Tabela 2.1.

Grupos	Aglomerado	N	$\langle V \sin i \rangle \pm \delta$	$\log(idade)$	$q \pm \delta$	$\sigma_q \pm \delta$
1	αPer	28	$24,\!62 \pm 3,\!28$	$7,\!55$	$1,473 \pm 0,028$	$14,00 \pm 0,77$
	IC2602	35	$20,\!08 \pm 2,\!83$	$7,\!83$	$1,\!498\pm 0,\!019$	$10,\!15 \pm 0,\!41$
2	Plêiades	145	$13,\!96 \pm 1,\!08$	8,08	$1,551 \pm 0,005$	$6{,}01\pm0{,}08$
	$\operatorname{NGC}6475$	57	$15,\!54 \pm 2,\!14$	8,22	$1,577 \pm 0,007$	$5{,}74\pm0{,}12$
	Blanco 1	79	$12,\!99 \pm 1,\!63$	8,32	$1,\!490\pm 0,\!011$	$5{,}86\pm0{,}13$
3	Coma Ber	22	$12,41 \pm 1,90$	8,78	$1,586 \pm 0,048$	$5,34 \pm 0,78$
	Híades	118	$8,50 \pm 0,95$	$8,\!90$	$1,\!452\pm 0,\!028$	$3{,}79\pm0{,}19$
	Preasepe	108	$9{,}46\pm0{,}97$	$8,\!90$	$1,416 \pm 0,020$	$5,\!14 \pm 0,\!17$
	$\operatorname{NGC}0752$	53	$16,\!41 \pm 1,\!75$	$9,\!14$	$1{,}626 \pm 0{,}017$	$6{,}02\pm0{,}36$
4	NGC 2682	40	$4,63 \pm 0,46$	9,41	$1,180 \pm 0,092$	$4,5 \pm 0,43$

Tabela 2.1: Principais informações sobre os aglomerados. N é a quantidade de dados de Vsin i. $\langle V \sin i \rangle$ representa o valor médio da velocidade rotacional projetada das estrelas do aglomerado.

As idades dos aglomerados, exceto para o aglomerado Híades, foram obtidas por Kharchenko *et al.*[37], a partir de um levantamento de idades usando o procedimento baseado em isócronas. A precisão na determinação das idades é de cerca de 0.20-0.25 dex. A idade de Híades não é disponibilizada por este autor devido a limitação na sua técnica, que requer uma boa definição dos membros do aglomerado. Então consideramos a idade de 787 Myr como indicado no WEBDA. Para a presente análise, os aglomerados foram separados em quatro grupos de acordo com a idade em escala logarítmica. Os grupos foram formados em faixas de idade de 0.50 dex a partir do aglomerado mais jovem. Para formar o primeiro grupo, iniciou-se com α Per onde se estabeleceu a faixa de 7,55 dex a 8,05 dex. Nesta faixa, além de α Per (7,55 dex), agrupou-se também o aglomerado IC2602 (7,83 dex). Em ordem crescente de idades, o próximo aglomerado é Plêiades com 8,08 dex, estabelecendo uma faixa de idade de 8,08 dex a 8,58 dex. Neste intervalo têm-se mais dois aglomerados: NGC 6475 (8,22 dex) e Blanco 1 (8,32 dex). A idade de Coma Ber (8,78 dex), estabelece a faixa de idade do terceiro grupo entre 8,78 dex e 9,28 dex, onde se agrupam Híades (8,90 dex), Praesepe (8,90 dex) e NGC 752 (9,14 dex). De acordo com o critério usado, o aglomerado NGC 2682 fica isolado no último grupo.

A tabela 2.2 apresenta todos os grupos e suas carcterísticas.

Grupos	N	$\langle V \sin i \rangle$	$\langle idade \rangle$	$\langle q \rangle \pm \delta$	$q \pm \delta$	$\sigma_q \pm \delta$
1	63	$22,\!10$	$7,\!69$	$1,\!486\pm 0,\!018$	$1,500 \pm 0,012$	$11,\!65 \pm 0,\!30$
2	281	14,00	8,21	$1,539 \pm 0,045$	$1,549 \pm 0,003$	$5,85 \pm 0,04$
3	301	10,52	8,93	$1,520 \pm 0,090$	$1,581 \pm 0,006$	$3,85 \pm 0,07$
4	40	4,63	9,41	$1,180 \pm 0,092$	$1,180 \pm 0,092$	$4,5 \pm 0,43$

Tabela 2.2: Principais informações sobre os grupos. Os valores de $\langle q \rangle$ foram obtidos fazendo a média aritmética entre os aglomerados. Enquanto que q foi obtido formando um só conjunto de dados de todos os aglomerados do grupo.

Capítulo 3 Resultados e discussões

3.1 As funções de distribuição acumuladas empíricas

A figura 3.1 mostra a função de distribuição acumulada empírica (FDAE) das velocidades rotacionais, $V \sin i$, de estrelas em cada aglomerado (linha pontilhada), bem como as respectivas curvas de melhor ajuste (linha sólida). Os painéis da esquerda apresentam a FDAE para estrelas que pertencem a cada aglomerado individual. Os painéis da direita apresentam a FDAE para as estrelas em cada grupo de estrelas, elaborado como descrito no Capítulo 2.

Para elaborar a FDAE para cada aglomerado ou grupo, procedemos da seguinte forma. 1) Começamos ordenando os dados de Vsin i em ordem crescente, do menor Vsin $i_{a=1}$ até o maior Vsin $i_{a=N}$, onde N é o número de dados de Vsin ido aglomerado ou grupo. 2) Computamos, o parâmetro de frequência $f_N(V \sin i)$ (Qin et al. 1998 [38]), definido por:

$$f_N = \begin{cases} 0, & \text{se } V \sin i \le V \sin i_1, \\ a/N, & \text{se } V \sin i_a < V \sin i \le V \sin i_{a+1}, \\ 1, & \text{se } V \sin i_N < V \sin i. \end{cases}$$

para cada aglomerado ou grupo. 3)Finalmente, fizemos a FDAE para cada aglomerado ou grupo, onde cada FDAE é um gráfico do parâmetro de frequência $f_N(V \sin i)$ versus $V \sin i$.

Para Determinar os parâmetros $q \in \sigma_y$ das curvas de melhor ajuste para

Figura 3.1: Função de Distribuição Acumulada Empírica das velocidades de rotação, Vsin i, para os aglomerados (painéis da esquerda) e dos grupos (painéis da direita). As curvas de melhor ajuste são representadas pelas linhas sólidas. O número entre parênteses é a idade do aglomerado ou a idade média do grupo (direita).

cada FDAE, adotamos o procedimento descrito em Soares & Silva [23], que consiste em ajustar a integral da função $\phi_q(y)$ (equação 1.19) à FDAE das velocidades rotacionais projetadas. Os resultados obtidos para o conjunto de estrelas de cada aglomerado, são apresentados no painel da esquerda da figura 3.1 e na tabela 2.1. Os resultados obtidos para o conjunto de estrelas de cada grupo são apresentados no painel da direita da figura 3.1 e na tabela 2.2.

3.2 A relação entre $V \sin i$ e a idade de aglomerados

Os painéis da esquerda na figura 3.1 e a tabela 2.1 mostram que há uma tendência para uma anti-correlação entre a idade do aglomerado e a rotação média observada de suas estrelas. Na figura 3.1, o decrescimento na velocidade rotacional, $V \sin i$, é observado como um gradual aumento da inclinação em torno da mediana das FDAE a medida que a idade aumenta. Na tabela 2.1, observa-se uma diminuição na largura da função distribuição com o aumento na idade, onde a largura equivalente σ_y para α Per e IC2602 são pelo menos o dobro da largura equivalente dos demais aglomerados. Um comportamento similar é exibido pelos grupos de aglomerados como mostram os painéis da direita na figura 3.1 e na tabela 2.1. Não se pode saber se no futuro a rotação de estrelas em aglomerados mais jovens reproduzirá o comportamento atual da rotação estelar nos aglomerados mais velhos. No entanto, o resultado descrito acima é consistente com aqueles obtidos para diferentes grupos de estrelas, onde se observa uma redução de rotação com a idade (e. g. Skumanich [40]; Mayor & Mermilliod [32]; Collier-Cameron *et al.* [41] e Scholz *et al.* [42]).

Figura 3.2: Distribuição da velocidade rotacional média, $\langle V \sin i \rangle$, das estrelas em cada aglomerado como função de suas respectivas idades. Círculos abertos representam Coma Ber (à esquerda) e NGC 0752 (à direita). As linhas representam a lei de freamento com $\alpha = 2,0$ e $A = 0,041 (kms^{-1})^{-1} Gyr^{-1}$ (pontilhada) e $\alpha = 2,0$ e $A = 0,052 (kms^{-1})^{-1} Gyr^{-1}$ (tracejada).

3.3 O comportamento das FDAE de Coma Ber e NGC 0752

Também na figura 3.1, observa-se que a FDAE da rotação das estrelas em Coma Ber e, mais marcadamente, em NGC 0752 parecem apresentar um comportamento rotacional diferente do apresentado pelos outros aglomerados do Grupo 3. De fato, o teste Kolmogorov-Smirnov mostra que as FDAE's de Coma Ber e Híades+Praesepe tem apenas 1,4% de probabilidade destas distribuições serem iguais, no caso da distribuições de NGC 0752 e Híades+Praesepe essa probabilidade cai para menos de 1%. Tais diferenças, no entanto, são o reflexo de uma característica marcante destes aglomerados: ambos apresentam poucas estrelas na parte inferior da sequência principal. É possível que tais aglomerados tenham perdido estrelas de baixa massa por meio de um processo de evaporação dinâmica (Bartašiūtė [49]; Mermilliod, Grenon & Mayor [25]). De fato, analisando as fontes de raios-X em NGC 0752 (ver figura 2 por Giardino et al. 2008 [43]), pode-se obervar que, para magnitudes em torno de B = 12, há uma escassez de fontes com massas de cerca de $1 M_{\odot}$. O trabalho de Giardino *et al.* [43] tambem mostra que a luminosidade de raios-X, L_X , de estrelas com massa em torno de $1 M_{\odot}$ em NGC 0752 é menos intensa do que a observada nas Híades, que é mais jovem. Como L_X é proporcional ao quadrado da velocidade rotacional parece peculiar que a FDAE de NGC 0752 apresente uma inclinação menos acentuada que do que a das Híades. É portanto, provável que a atual distribuição da rotação estelar em NGC 0752 tenha sido afetada por um processo dinâmico, pelo qual o aglomerado perde estrelas de baixa massa. Neste sentido, é importante também lembrar Francic [51], quem mostrou que a função de massa de NGC 0752 mostra um desvio em direção às estrelas de maior massa.

Mayor & Mermilliod [32] analisaram a dependência da rotação estelar com a idade para estrelas do tipo G pertencente às Híades, Plêiades e Praesepe. Eles mostraram que a distribuição das velocidades rotacionais como uma função da idade segue uma lei de freio magnético que pode ser escrita como

$$\frac{dV}{dt} = -AV^{\alpha}.\tag{3.1}$$

Neste modelo, o parâmetro α contém informações sobre a geometria do campo magnético estelar e a relação entre campo magnético e rotação. O parâmetro A está relacionado à massa, raio estelar, taxa de perda de massa e vento solar. Usando este modelo com $\alpha = 2,0$ e A = $0,056 (\text{kms}^{-1})^{-1} \text{Gyr}^{-1}$, estes autores mostraram que a diferença observada entre as distribuições de $V \sin i$ para Plêiades, Híades e Praesepe, pode ser explicada como sendo o resultado da evolução estelar atuando num tempo igual à diferença entre as idades de Plêiades e Híades (1,3Gyr).

A figura 3.2 exibe a média da velocidade rotacional projetada $\langle V \sin i \rangle$, das estrelas em cada aglomerado como uma função da idade dos aglomerados. A diminuição da rotação em função da idade estelar nesta figura é bastante clara. Usando a equação 3.1 descrita acima com $\alpha = 2,0$ e A como um parâmetro livre, o melhor ajuste é obtido para A = $0.041 \pm 0.007 (\text{kms}^{-1})^{-1} \text{Gyr}^{-1}$, com $\chi^2/dof = 8,57$ e $R^2 = 0,74$. Se Coma Ber e NGC 0752 forem excluídas da análise, o melhor ajuste é obtido com $\chi^2/dof = 2,44$ e $R^2 = 0,94$ para A = $0.052 \pm 0.005 (\text{kms}^{-1})^{-1} \text{Gyr}^{-1}$, que é praticamente o mesmo valor obtido por Mayor & Mermilliod [32]. Neste procedimento a média da velocidade rotacional e a idade de α Per, $\langle V \sin i \rangle = 24,62 \text{kms}^{-1}$ e log(idade) = 7,55 dex, como valores iniciais e a suposição de que os demais aglomerados tinham a mesma distribuição das velocidades de rotação de α Per na idade deste aglomerado. Nota-se também que estes ajustes não levam em conta as incertezas nas velocidades rotacionais, $V \sin i$, e idades representadas na figura pelas respectivas barras de erro.

Como pode ser visto na figura 3.2, o aglomerado NGC 0752 desvia-se da lei de decaimento mencionada. Como discutido acima, é muito provável que a média da velocidade rotacional das estrelas de NGC 0752 em nossa amostra esteja superestimada, o que faz com que ele se localize acima da curva da lei de freamento magnético. Por outro lado, o comportamento do aglomerado NGC 2682 (2,57 Gyr), com $\langle V \sin i \rangle$ abaixo da curva da lei de freamento magnético, é consistente com o resultado obtido por Giardino *et al.* [43], que indica um aumento da taxa de decaimento de rotação em idades em torno de 1Gyr. Também parece consistente com os resultados obtidos por Mayor & Mermilliod [44], indicando que para estrelas mais jovens que 1Gyr a dependência da rotação na idade é muito mais fraca do que para estrelas mais velhas.

3.4 A relação entre $V \sin i$ e o índice entrópico

A distribuição do índice entrópico q como função da média da velocidade rotacional, $\langle V \sin i \rangle$, é apresentada na figura 3.3. Pode-se ver que esta distribuição apresenta tendência para um aumento acentuado no índice entrópico q como função de $\langle V \sin i \rangle$ até cerca de 16kms⁻¹ seguido por aparente diminuição. De acordo com a lei de freio magnético mostrada na figura 3.2, uma velocidade rotacional de 16kms⁻¹ corresponde à idade log(idade) \simeq 8dex. Assim, pode-se observar pelo menos dois regimes de rotação para o índice entrópico q: um regime de crescimento com a média rotacional e um regime de decrescimento, a partir de valores $\langle V \sin i \rangle = 16 \text{kms}^{-1}$. Este comportamento geral da distribuição de q versus $\langle V \sin i \rangle$ reflete a dependência temporal do índice entrópico q, como sugerido por Soares & Silva[23]. Portanto, espera-se que exista um comportamento similar na distribuição de q como função da idade em cerca de 8dex.

3.5 A relação entre o índice entrópico q e a idade dos aglomerados

Para investigar a dependência temporal do índice entrópico q, analisou-se três diferentes distribuições deste índice como função da idade dos aglomerados. A figura 3.4 mostra as três distribuições: (1) q obtido da FDAE para cada aglomerado como função da idade dos mesmos (círculos); (2) q obtido do ajuste da FDAE para cada grupo como função da média da idade de cada aglomerado que compõe o grupo (triângulos) e (3) média de q dos aglomerados que compõe cada grupo como função da idade média dos aglomerados dos grupos (quadrados). O

Figura 3.3: Distribuição do índice entrópico q em função da rotação $\langle V \sin i \rangle$ das estrelas em cada aglomerado. Os círculos abertos representam Coma Ber (à esquerda) e NGC 0752 (à direita).

painel interior exibe as distribuições (2) e (3), onde foram excluídos os aglomerados Coma Ber e NGC 0752.

Novamente, podemos observar na figura 3.4 uma tendência geral para dois diferentes regimes, que dependem da idade do aglomerado. No primeiro, observase uma tendência para um crescimento de q com a idade até aproximadamente 8dex, que equivale a $\langle V \sin i \rangle = 16 \text{kms}^{-1}$ (ver figura 3.2). No segundo, ou seja, para aglomerados com idade superior a aproximadamente 8dex, observa-se uma relativa diminuição acentuada do índice entrópico q com o aumento da idade dos aglomerados. Este comportamento aparece mais claramente no painel interior da figura 3.4, onde os aglomerados Coma Ber e NGC 0752 não estão representados. A distribuição mostrada na figura 3.3 está em perfeito acordo com a mostrada na figura 3.4: ambas as distribuições tendem a apresentar dois diferentes regimes na variação do parâmetro q e a mudança de regimes ocorre na idade de aproximadamente 8dex, que corresponde a $\langle V \sin i \rangle = 16 km s^{-1}$. Este comportamento é esperado, uma vez que o parâmetro q é obtido de uma distribuição estatística de $V \sin i$ e, como mostrado na figura 3.2, a rotação média dos aglomerados é função da idade. No entanto, é importante levar em consideração que os dados observacionais das idades e os valores estimados de $V \sin i$ foram obtidos a partir de estudos independentes.

Se associamos os valores do índice entrópico q a diferentes graus de aleatoriedade dos eixos rotacionais das estrelas do aglomerado, tal que q = 1 representa uma orientação completamente aleatória dos eixos de rotação, temos que todos aglomerados de nossa amostra apresentam algum grau de alinhamento dos eixos rotacionais. A figura 3.4 mostra que o índice entrópico q tem uma tendência geral de diminuição com o crescimento da idade do aglomerado e que q aproxima-se da unidade para os aglomerados mais velhos. Tal comportamento está de acordo com a proposição feita por vant Veer[9], segundo o qual as estrelas mais jovens dos AGA's tendem a mostrar inicialmente uma orientação preferencial nos seus eixos de rotação até cerca de 8dex e que esta orientação é perdida gradualmente a medida que o aglomerado vai se tornando mais velho. No entanto, apesar desta

Figura 3.4: Distribuição do índice entrópico q como função das idades dos aglomerados. Círculos representam os parâmetros q e idade para o conjunto de estrelas nos aglomerados. Círculos abertos indicam Coma Ber (esquerda) e NGC 0752 (direita). Os triângulos correspondem ao q, obtido a partir do ajuste da FDAE para cada um dos grupos em função da idade média do grupo. Os quadrados representam os valores médios de q em função da idade média do grupo. O painel de dentro exibe a mesma distribuição para os grupos sem Coma Ber e NGC 0752

discussão, podemos observar que o primeiro regime da distribuição do índice q tende a apresentar um ligeiro aumento com o tempo. Este comportamento pode estar relacionado com os processos que determinam a história do momento angular das estrelas em aglomerados jovens, como discutido abaixo.

3.6 O índice entrópico q e a evolução do momentum angular

Embora este trabalho não tenha por finalidade identificar as causas da correlação entre o índice entrópico q e a idade dos aglomerados, pode-se conjecturar acerca das possíveis relações entre a variação do índice entrópico q com a idade e alguns aspectos da evolução do momentum angular estelar. O aparente aumento nos valores de q até cerca de 8dex mostrados na figura 3.4 podem estar relacionados com o tempo de acoplamento das estrelas com seu disco durante a pré-sequência principal (PSP). O tempo de acoplamento pode determinar se a estrela atinge a sequência principal com alta ou baixa rotação [34]. Por sua vez, este tempo de acoplamento pode determinar a fração de estrelas com altas ou baixas velocidades de rotação para um dado grupo de estrelas com massa semelhante, determinando sua distribuição de $V \sin i$. O leve aumento nos valores de q observado para idades menores que 8dex, pode estar relacionado com os diferentes intervalos de tempo de acoplamento das estrelas com seu disco durante a PSP.

Por outro lado, se relaxarmos um pouco a hipótese de rotação de corpo rígido, podemos assumir que na idade zero da sequência principal (ZAMS - zero age main sequence) as estrelas giram com diferentes taxas na sua envoltória convectiva e núcleo radiativo [45]. Além disso, a envoltória perde seu momentum angular mais rapidamente do que o núcleo, mas o núcleo atua como um reservatório de momentum angular e o transfere gradativamente para a envoltória de modo a restaurar a rotação da envoltória ([46] e [47]). O estudo realizado com estrelas de rotações baixas e moderadas nas Plêiades realizado por Queloz *et al.*[33] mostrou a escala de tempo para a transferência do momentum angular de um núcleo com alta rotação para a envoltória estelar, de modo a restaurar sua rotação, é de cerca de 100-200Myr (~ 8dex). Mais recentemente, o trabalho de Bouvier [35] com base em modelos baseados de estrutura interna atualizadas até 2008 estabeleceu essa escala de tempo em aproximadamente 100Myr (~ 8dex)(ver também Irwin & Bouvier [48]). Tais resultados apontam para uma mudança na distribuição do momento angular rotacional de estrelas com rotação baixa e moderada em torno de 8dex. Neste contexto, a idade em que a mudança de regime de q ocorre na figura 3.4, indicando uma mudança na distribuição de $V \sin i$, parece ser consistente com a mudança no processo interno de transferência do momentum angular.

De acordo com a discussão acima, pode-se interpretar a mudança de regime na distribuição do índice entrópico com a idade em 8dex de acordo com o seguinte contexto: apesar de perder *momentum* angular relativamente rápido, as camadas mais externas da estrela são constantemente reabastecidas pelo *momentum* angular proveniente do núcleo, graças ao acoplamento núcleo-envoltória. Para estrelas na faixa de massa do presente estudo, esse acoplamento dura cerca de 8dex. Após esse tempo, as camadas externas deixam de serem abastecidas pelo núcleo e seu *momentum* angular decresce. Tal decrescimeto torna a alteração do *momentum* angular das camadas mais externas mais fácil de ocorrer através de processos dinâmicos, tais como encontros próximos e vento estelar.

Capítulo 4 Conclusões e perspectivas

A função de distribuição teórica baseada no formalismo estatístico nãoextensivo de Tsallis, têm-se revelado uma ferramenta eficaz na reprodução da distribuição empírica das velocidades rotacionais em diferentes populações estelares. No contexto da estatística não-extensiva, o índice entrópico q é o parâmetro chave que controla a forma da função de distribuição teórica. Neste trabalho o parâmetro q é associado aos diferentes graus de alinhamento do eixo rotacional das estrelas, tal que q = 1 representa uma distribuição completamente aleatória. Para investigar a existência de uma possível correlação entre o índice entrópico q e a idade dos aglomerados, foi usada uma amostra de velocidades rotacionais, $V \sin i$, de 685 estrelas de 10 AGA's.

Como primeiro resultado, verificou-se que todos os aglomerados de nossa amostra apresentam índice entrópico q maior que a unidade, indicando que os eixos de rotação das estrelas nos aglomerados apresentam algum grau de alinhamento. Como segundo resultado, encontramos uma tendência geral para uma correlação entre q e a idade dos aglomerados tal que q tende para a unidade a medida que a idade do aglomerado aumenta. Este resultado em particular, dá suporte ao cenário em que as estrelas mais jovens de AGA's tendem a apresentar uma orientação preferencial nos seus eixos rotacionais e que tal característica pode ser gradualmente perdida, com a orientação tornando-se aleatória com o passar do tempo. Também foi observado que a distribuição de q versus idade, parece apresentar dois regimes de comportamento. Para idade inferiores a cerca de 8dex, há uma tendência para lento crescimento do índice entrópico q com o aumento da idade dos aglomerados. Para aglomerados com idade superior a 8dex, observa-se uma diminuição relativamente acentuada do índice entrópico q com o aumento da idade. A idade em que a mudança dos dois regimes de q ocorre (~ 8dex), é similar à escala de tempo em que ocorre a transferência do momento angular do núcleo para a envoltória convectiva da estrela da sequência principal com rotação baixa ou moderada.

Pesquisas futuras podem discutir mais profundamente pontos importantes levantados neste trabalho. Neste sentido, podemos destacar como perspectivas:

- Ampliar o intervalo de idade para verificar a sensibilidade do parâmetro q aos diferentes estágios da evolução do momentum angular;
- Reduzir o intervalo de valores do índice B-V para verificar a influência da massa associada ao parâmetro σ;
- Realizar estudo com vista a quantificação do grau de inclinação dos eixos;
- Fazer um estudo comparativo utilizando uma base de dados de períodos rotacionais para os mesmos aglomerados, com o objetivo de distinguir possíveis influências causadas pela evolução da rotação e pela orientação dos eixos rotacionais sobre o parâmetro q.

Apêndice A

Base de dados

<i>us ue 101</i>	uçuo puru
$V \sin i$	$\delta V \sin i$
45,5	9,7
19,2	0,7
9,6	0,7
19,0	$7,\!6$
$19,\!4$	0,9
$65,\!4$	6,7
33,7	3,4
$12,\!9$	1,7
4,3	2,3
18,4	$1,\!3$
$11,\!5$	$1,\!6$
$13,\!2$	0,8
27,4	2,7
32,4	3,2
$19,\!8$	6,2
$11,\!6$	1,2
$42,\!6$	5,0
25,7	$2,\!6$
6,7	$1,\!4$
28,7	2,9
50,4	5,7
35,7	3,6
$13,\!8$	$0,\!8$
4,3	2,3
$37,\!8$	3,8
66,1	$6,\!6$
5,8	$14,\!3$
8,5	$1,\!4$

Tabela A.1: Dados de rotação para αPer

		SIZ: ·		IZ ·····	
WEBDA	$\frac{V \sin i}{C \Omega}$	$\frac{\partial V \sin i}{\partial Q}$	WEBDA	$\frac{V \sin i}{0.4}$	$\frac{\partial V \sin i}{\partial V}$
18	6,2	2,9	360	0,4	3,8
20	4,8	0,9	361	0,5	5,2
28	9,0	1,1	1021	2,9	3,6
37	66,8	6,7	1025	6,4	4,0
38	69,0	15,2	1029	39,8	4,0
52	9,1	0,9	1031	7,9	1,1
53	24,0	2,4	1033	3,7	5,0
56	12,8	$0,\!8$	1044	8,0	$1,\!2$
58	66,0	15.0	1045	$_{6,0}$	$1,\!9$
60	19,1	$0,\!9$	1050	9,5	$1,\!0$
63	$_{6,0}$	$0,\!9$	1054	$13,\!5$	$1,\!8$
64	7,4	$1,\!1$	1058	$11,\!6$	$1,\!0$
74	31,7	6,7	1070	7,0	2,3
79	7,1	$1,\!1$	1075	7,8	$1,\!6$
80	8,7	$1,\!0$	1078	5,1	4,6
85	$54,\!0$	$9,\!4$	1093	6,3	$0,\!0$
89	$19,\!0$	0,9	1095	10,2	$2,\!8$
91	$18,\!3$	$0,\!9$	1100	$12,\!3$	1,7
99	$15,\!3$	$1,\!0$	1111	3,1	3,7
110	$15,\!0$	$0,\!9$	1112	6,8	$1,\!6$
113	8,0	$0,\!9$	1113	3,4	$0,\!0$
120	$20,\!6$	2,4	1118	$4,\!9$	$2,\!6$
122	$13,\!2$	$0,\!8$	1124	5,9	1,7
125	22,0	$2,\!8$	1135	2,6	2,2
330	10,5	$1,\!4$	1141	$4,\!9$	$1,\!3$
331	12,1	2,0	1147	4,8	2,0
332	30,9	5,2	1154	6,6	$1,\!8$
334	16,2	$_{3,0}$	1161	4,0	$_{3,0}$
336	41,8	$4,\!9$	1170	9,7	1,1
337	3,7	2,1	1177	24,4	$_{6,0}$
340	8,8	$1,\!4$	1181	5,9	7,7
346	12,5	$1,\!3$	1186	2,3	2,9
347	10,3	$1,\!3$	1187	10,9	4,5
349	8,1	1,7	1203	7,4	4,3
352	5,1	2,4	1218	8,0	$1,\!2$
353	8,1	1,5	1222	$0,\!4$	0,0
354	5,1	2,4	1227	3,5	0,0
356	3,1	2,2	1228	10,1	$2,\!5$
357	$2,\!6$	0,0	1234	$2,\!6$	0,0
359	22,7	2,3		,	,
	/		I		

Tabela A.2: Dados de rotação para Blanco 1

WEBDA	$V \sin i$	$\delta V \sin i$
12	6,6	0,6
19	$19,\!8$	$0,\!4$
36	35,1	3,5
58	16,0	$0,\!4$
65	9,5	$0,\!5$
76	9,0	$0,\!4$
85	6,8	$0,\!5$
86	20,3	2,0
90	$15,\!3$	$0,\!5$
92	20,9	2,1
101	26,1	$2,\!6$
114	15,7	$0,\!4$
118	$16,\!5$	$0,\!5$
132	3,5	$0,\!8$
162	18,3	$0,\!6$
213	5,0	0,9
282	$1,\!4$	$2,\!8$
420	4,7	$1,\!3$
421	1,0	3,6
426	3,5	1,2
431	3,8	$1,\!9$
436	14,1	$0,\!5$

Tabela A.3: Dados de rotação para Coma Ber

	Tabola II.I. D'aabb ac rotagab para ab Iltaace						
A	$V \sin i$	$\delta V \sin i$	WEBDA	$V \sin i$	$\delta V \sin i$	WEBDA	$V \sin i$
	5,5	1,2	88	4,2	$1,\!3$	1475	3,2
	6,4	$1,\!0$	90	$39,\!8$	10,7	1500	9,5
	4,4	1,2	91	3,6	1,7	1548	$_{3,9}$

Tabela A.4: Dados de rotação para as Híades

WEBDA	$V \sin i$	$\delta V \sin i$	WEBDA	$V \sin i$	$\delta V \sin i$	WEBDA	$V \sin i$	$\delta V \sin i$
1	$5,\!5$	1,2	88	4,2	1,3	1475	3,2	2,4
2	6,4	$1,\!0$	90	39,8	10,7	1500	9,5	1,1
3	4,4	1,2	91	$3,\!6$	1,7	1548	$3,\!9$	$1,\!6$
4	3,4	$1,\!4$	92	4,3	1,1	1560	4,2	0,9
5	3,4	2,0	93	6,5	$1,\!4$	1630	7,4	2,1
7	5,1	0,7	97	$7,\!6$	0,9	1645	$1,\!6$	2,4
10	$6,\!5$	$1,\!0$	99	$_{3,0}$	$1,\!6$	1747	5,1	0,7
13	27,2	2,7	102	7,4	$0,\!8$	2007	$2,\!6$	$1,\!9$
15	5,6	$1,\!0$	105	4,3	$1,\!0$	2008	2,3	$1,\!8$
17	5,0	$1,\!3$	106	2,2	1,7	2010	$4,\!8$	0,9
18	4,4	1,2	109	4,6	$1,\!0$	2011	$1,\!3$	$1,\!4$
19	15,9	1,5	110	2,3	$1,\!6$	2015	$6,\!5$	$_{3,3}$
21	$3,\!9$	$1,\!0$	113	$7,\!6$	$1,\!8$	2016	$_{3,0}$	$1,\!4$
25	2,5	$1,\!6$	114	4,1	1,7	2025	2,0	2,9
26	3,6	$1,\!1$	115	2,9	$1,\!4$	2026	5,4	1,7
27	5,0	0,9	116	$_{4,2}$	0,9	2033	11,3	0,9
29	16,3	$0,\!6$	118	$5,\!8$	0,9	2038	$2,\!8$	2,5
31	10,2	0,7	121	15,9	$0,\!6$	2059	6,5	$1,\!1$
36	65,9	6,6	122	10,9	$1,\!0$	2064	3,6	2,0
37	20,4	2,0	124	$21,\!6$	2,2	2065	$2,\!8$	2,0
43	4,3	1,2	127	3,2	$1,\!1$	2066	2,7	$2,\!3$
44	$47,\! 6$	6,3	128	34,2	$3,\!4$	2077	$2,\!0$	2,4
46	$4,\!8$	0,9	135	2,5	1,7	2079	2,7	$0,\!0$
48	13,3	0,7	140	5,7	1,1	2080	$3,\!9$	$1,\!4$
49	32,4	3,2	142	$6,\!6$	$0,\!8$	2093	3,5	$1,\!8$
50	8,2	$1,\!0$	143	10,0	0,7	2095	10,8	$0,\!0$
51	40,3	4,0	145	4,1	$1,\!4$	2096	$4,\!8$	1,2
52	6,7	0,7	149	1,5	2,0	2098	3,5	1,2
57	16,3	$1,\!0$	150	$_{3,8}$	$1,\!3$	2101	$_{3,0}$	2,4
59	7,1	1,7	151	$_{3,3}$	2,4	2119	1,7	4,1
61	$22,\!3$	2,2	158	4,7	$1,\!3$			
64	$5,\!8$	1,1	170	$1,\!8$	2,2			
65	11,1	$0,\!6$	184	5,8	2,5			
66	10,2	0,5	187	4,8	0,8			
68	4,2	3,8	1075	2,7	$1,\!8$			
69	4,0	$1,\!2$	1276	2,5	2,3			
73	$7,\!6$	$1,\!0$	1294	$_{3,0}$	0,0			
76	3,0	1,1	1310	3,1	$1,\!6$			
77	20,1	2,0	1342	$1,\!8$	$1,\!3$			
78	$28,\!8$	2,9	1354	4,1	$1,\!6$			
79	$_{3,9}$	$1,\!2$	1404	5,4	$1,\!9$			
81	$24,\!5$	2,5	1407	5,4	1,7			
86	$_{30,4}$	$_{3,0}$	1459	3,3	$1,\!3$			
87	$4,\!9$	0,8	1472	$_{6,0}$	1,4			

WEBDA	$V \sin i$	$\delta V \sin i$
6	26,6	2,8
25	$65,\!5$	$15,\!4$
56	2,0	1,5
57	2,9	1,5
116	38,3	$_{3,8}$
120	51,2	$12,\! 6$
131	$51,\!8$	8,4
132	14,7	1,1
134	8,4	$1,\!4$
149	23,1	3,5
154	4,8	1,5
156	66,5	$9,\!9$
157	$11,\!8$	0,9
501	$_{30,1}$	8,0
502	7,1	2,7
503	14,7	$1,\!9$
504	24,2	4,4
505	$2,\!8$	2,7
1010	6,3	$1,\!9$
1031	27,5	$2,\!8$
1080	26,9	2,7
1121	8,0	$1,\!3$
1140	$13,\!8$	1,5
1151	6,4	$1,\!8$
1180	$12,\!6$	6,9
1290	19,2	$2,\!6$
1421	19,1	6,8
1422	9,7	$1,\!9$
1423	8,0	7,1
1451	13,1	1,5
1460	18,7	2,3
1590	29,1	2,9
1660	$12,\! 6$	$1,\!9$
1951	10,9	$1,\!6$
2000	$14,\!4$	2,3

Tabela A.5: *Dados de rotação para IC 2602* WEBDA Vsin $i = \delta V \sin i$

	Vain i	SUcin i		Vain i	SVain i
WEDDA	$\frac{V \sin i}{C \Omega}$	$\frac{\partial V \sin i}{\partial Q}$	WEDDA	$\frac{V \operatorname{SIII} i}{24 c}$	$\frac{\partial V \sin i}{\partial F}$
13	0,9	2,2	232	24,0	2,5
34	18,9	0,6	244	3,6	0,0
48	5,2	$_{3,0}$	254	52,2	13,8
55	$14,\!5$	$0,\!9$	259	$15,\!3$	$1,\!6$
62	$20,\!6$	2,1	261	4,1	$1,\!5$
64	8,1	12,5	263	$11,\!8$	2,1
66	37,1	4,5	268	6,0	$1,\!3$
80	0,4	$0,\!0$	273	3,3	2,3
88	40,5	$_{4,0}$	293	19,7	$1,\!2$
106	32,2	3,2	302	$34,\!0$	3,8
120	9,6	1,2	430	2,2	3,4
123	$35,\!0$	$7,\!5$	1110	$24,\!8$	2,5
135	22,1	2,2	1118	6,5	$1,\!8$
139	22,2	8,4	1144	4,3	$0,\!0$
140	$7,\!6$	$_{3,0}$	1176	$14,\! 6$	0,8
166	26,7	8,4	1215	16,2	$1,\!4$
176	11,9	2,2	1354	20,5	2,0
182	5,9	1,4	1370	27,8	$2,\!8$
184	$7,\!3$	1,7	1407	1,2	$3,\!0$
185	9,2	1,1	1425	6,4	$1,\!3$
189	8,6	1,2	1462	$7,\!4$	1,4
192	38,3	21,9	1490	19,3	1,9
197	28,4	3,3	1495	$2,\!8$	1,8
211	$3,\!4$	0,0	1497	12,7	1,0
216	4,2	0,0	2101	35,3	$3,\!5$
218	34.1	3.4	2273	31.8	3.2
229	2.6	2,4		-)-	-)
	,	,	l		

Tabela A.6: Dados de rotação para NGC 0752

WEBDA	$V \sin i$	$\frac{\delta V \sin i}{\delta V \sin i}$	WEBDA	$V \sin i$	$\frac{\delta V \sin i}{\delta V \sin i}$	WEBDA	$V \sin i$	$\delta V \sin i$
9	2,8	1,5	309	2,0	2,4	547	0,0	2,2
23	$5,\!1$	$1,\!1$	313	4,5	$3,\!0$	851	$7,\!5$	0,9
27	4,7	$1,\!1$	326	$5,\!1$	1,7	869	$5,\!5$	$1,\!3$
30	$5,\!9$	$1,\!9$	332	$28,\! 6$	2,9	1129	6,9	$1,\!3$
31	10,5	$0,\!6$	334	9,4	0,9	1288	$2,\!6$	$1,\!8$
32	5,1	$1,\!6$	335	6,0	$1,\!0$	2121	7,4	5,2
48	2,4	2,5	336	4,6	$1,\!5$	2146	2,5	$0,\!0$
49	8,9	0,9	344	2,2	2,3	2218	$15,\!8$	$0,\!8$
52	5,5	2,5	349	2,7	2,4	2236	16,0	0,9
58	5,5	1,1	353	7,5	2,2	2278	$_{6,0}$	$1,\!5$
70	2,4	$1,\!5$	371	22,4	2,2	2353	13,7	0,9
79	5,2	2,5	392	5,4	0,9	2449	3,7	2,4
90	6,7	0,8	396	$15,\!8$	0,9	2680	10,7	$1,\!0$
100	$13,\!8$	0,7	403	0,0	0,0	2686	4,1	2,3
155	29,5	$_{3,0}$	411	$_{30,6}$	3,1	2692	4,3	1,2
162	9,5	$1,\!0$	417	0,8	$3,\!9$	2700	6,7	0,9
164	3,9	$1,\!6$	418	8,1	0,8	2807	$9,\!8$	$0,\!8$
169	$12,\! 6$	$0,\!8$	421	12,0	0,7	3076	3,6	2,1
182	8,6	$1,\!3$	430	3,8	2,6	3103	5,5	$1,\!5$
196	8,8	0,9	432	6,0	$1,\!0$	3369	4,1	$1,\!6$
208	9,0	0,9	448	4,2	2,3	3529	4,9	1,5
213	5,8	2,5	454	20,3	2,0	3563	4,9	2,3
217	$14,\!5$	$0,\!6$	458	$14,\!3$	$0,\!6$	3596	9,2	0,9
222	9,5	0,9	466	$_{3,8}$	1,5	3660	4,6	1,7
227	16,7	$0,\!6$	471	5,5	$1,\!8$	3803	34,7	3,5
236	9,4	4,7	474	6,5	$1,\!8$	3809	$_{4,0}$	$_{3,0}$
238	22,1	2,2	476	5,7	$1,\!2$	3815	6,9	$1,\!6$
239	$31,\!0$	3,1	488	4,5	$1,\!8$	3817	71,2	8,6
250	$37,\!6$	3,8	492	6,8	$1,\!8$	3822	$4,\!6$	$1,\!4$
257	12,5	$1,\!1$	498	4,7	1,7	3837	8,6	$0,\!0$
263	8,7	2,3	514	3,3	$_{0,0}$	3856	8,8	1,5
275	4,1	0,8	537	3,7	$1,\!3$	3858	$1,\!1$	$0,\!0$
288	$4,\!9$	1,2	541	4,3	1,2	3866	$37,\!8$	$_{3,8}$
293	31,9	3,2	542	4,8	1,2	3867	10,3	1,1
301	7,2	$1,\!6$	543	7,7	1,4	3869	2,3	$1,\!9$
304	5,4	$1,\!6$	546	$4,\!3$	0,0	3871	$1,\!4$	2,1

Tabela A.7: Dados de rotação para Praesepe

WEBDA	$V \sin i$	$\delta V \sin i$
3	9,3	1,7
6	6,0	2,0
18	11,2	$1,\!4$
20	0,9	$0,\!0$
37	2,6	2,0
48	0,4	$4,\!4$
54	4,6	2,5
72	1,2	2,2
94	8,1	$1,\!4$
96	7,3	1,5
115	3,4	2,3
127	5,3	$1,\!6$
157	7,3	1,7
163	5,2	$1,\!9$
166	2,9	$0,\!0$
193	2,6	1,7
215	$10,\!6$	$1,\!6$
226	2,0	2,0
227	5,0	$1,\!8$
237	0,0	$0,\!0$
241	5,2	2,1
243	6,4	$1,\!9$
256	$_{6,0}$	3,1
271	4,5	2,2
272	5,5	$1,\!9$
281	5,1	$1,\!8$
287	8,3	1,7
289	7,3	2,1
303	4,2	2,4
317	2,2	$0,\!0$
4018	0,0	$0,\!0$
7368	0,5	3,4
7489	8,8	2,2
7657	5,7	1,7
7859	0,9	3,1
7871	5,7	2,2
8524	1,5	4,3
8639	3,8	$0,\!0$
8713	4,2	$1,\!9$
8792	3,5	2,2

Tabela A.8: Dados de rotação para NGC 2682

	<u> </u>				$\frac{410}{517 \cdot \cdot \cdot}$
WEBDA	$V \sin i$	$\frac{\partial V \sin i}{\partial r}$	WEBDA	$V \sin i$	$\frac{\partial V \sin i}{\partial V}$
15	37,0	3,7	1460	14,1	$2,\!3$
44	47,1	$9,\!2$	1521	$_{6,0}$	$1,\!6$
49	$65,\!5$	$10,\!0$	1529	$_{9,8}$	$1,\!3$
50	$17,\!3$	$1,\!6$	1533	4,3	$_{3,0}$
53	23,7	$2,\!5$	1536	2,9	2,9
57	31,7	3,2	1539	7,7	$1,\!4$
66	16,1	$14,\! 0$	1549	$12,\!0$	1,5
73	$11,\!6$	$1,\!1$	1550	$19,\!4$	1,2
74	$13,\!4$	$1,\!0$	1560	26,2	2,6
76	7,8	$1,\!5$	1629	13,7	4,6
80	$24,\! 6$	$5,\!3$	1630	$_{9,0}$	$1,\!8$
87	$65,\!8$	$13,\!4$	1642	$18,\!9$	$1,\!3$
93	$31,\!8$	3,2	1723	5,9	2,8
97	68,9	6,9	1724	5,5	2,0
115	48,2	8,6	1886	1,1	$0,\!0$
127	26,4	3,2	1939	$14,\!3$	3,3
1018	19,0	$1,\!4$	3330	$7,\!8$	2,9
1019	5,8	$1,\!8$	3461	$_{3,0}$	$0,\!0$
1107	5,8	2,4	3530	3,7	3,2
1114	14,3	$2,\!3$	3760	5,2	3,1
1122	3,2	$0,\!0$	3790	6,9	$1,\!6$
1205	4,5	$1,\!5$	3940	4,3	2,9
1214	4,2	1,9	4020	6,1	4,3
1215	3,6	2,8	4030	2,4	$2,\!8$
1223	10,1	1,2	4111	6,1	2,4
1344	9,7	1,8	4192	$7,\!6$	2,3
1348	$15,\!5$	2,1	4230	9,8	2,1
1438	6,7	1,5	4402	$1,\!9$	3,1
1446	11,0	2,0		-	
	,		1		

Tabela A.9: Dados de rotação para NGC 6475

		$\frac{1}{517}$					T <i>T</i> · · ·	<u> </u>
WEBDA	$V \sin i$	$\frac{\partial V \sin i}{\partial V \sin i}$	WEBDA	$V \sin i$	$\frac{\partial V \sin i}{\nabla 2}$	WEBDA	$V \sin i$	$\frac{\partial V \sin i}{\partial Q}$
25	46,0	5,7	1132	49,5	5,0		11,1	0,9
34	7,3	1,1	1139	31,8	3,2	3406	36,4	3,6
102	18,6	0,4	1182	16,6	1,2	3408	15,6	1,0
129	5,6	1,4	1200	13,7	0,8	3411	5,2	1,3
152	11,3	1,1	1207	5,1	1,3	3412	11,3	0,9
174	14,4	10,2	1215	6,7	0,9	3415	24,5	2,4
186	10,7	0,7	1220	4,9	$1,\!3$	3417	29,6	3,0
193	6,7	1,4	1275	6,5	1,1	3418	11,9	1,0
248	12,1	$1,\!1$	1298	$5,\!8$	2,1	3419	$4,\!8$	$1,\!4$
253	$_{38,5}$	$3,\!9$	1332	2,1	$0,\!0$	3420	9,7	$1,\!1$
293	$6,\!6$	$1,\!0$	1392	16,0	$1,\!6$	3423	36,2	$3,\!6$
296	14,9	0,9	1514	13,7	0,7	3428	9,1	1,2
298	$6,\!8$	$1,\!1$	1593	$0,\!8$	2,0	3429	$33,\!9$	3,4
303	17,5	0,7	1613	20,0	0,8	3431	12,2	$1,\!0$
314	42,8	4,3	1726	12,9	0,7	3432	43,7	8,3
338	$65,\! 6$	6,6	1766	23,1	2,3	3434	3,7	$1,\!4$
345	19,0	0,7	1776	10,3	$1,\!0$	3435	$19,\! 6$	1,1
405	18,5	$1,\!0$	1794	$11,\!3$	0,8	3437	$14,\!4$	2,4
430	7,4	$1,\!0$	1797	$19,\!8$	0,9	3439	$1,\!8$	$1,\!9$
470	$25,\!4$	2,5	1856	$15,\! 6$	0,9	3440	$11,\!9$	$0,\!6$
489	18,3	0,8	1924	14,2	0,7	3441	0,0	$0,\!0$
514	$10,\!6$	$1,\!0$	2106	3,7	$1,\!4$	3443	7,5	$1,\!8$
530	17,5	0,8	2126	2,7	2,1	3443	11,5	$2,\!6$
627	$33,\!4$	3,3	2278	6,2	0,9	3444	$_{3,9}$	2,9
659	12,1	$1,\!1$	2311	6,4	$1,\!3$	3445	8,0	$1,\!4$
727	66,4	8,5	2341	$_{3,5}$	$1,\!6$	3446	8,2	1,2
739	$14,\! 6$	$0,\!6$	2366	$_{3,0}$	$1,\!6$	3447	$4,\!6$	$1,\!5$
879	7,3	$1,\!3$	2462	5,6	$1,\!2$	3450	7,1	$1,\!5$
882	8,6	$11,\!3$	2506	$13,\!9$	0,8	3468	7,5	$1,\!0$
885	6,1	$1,\!1$	2644	3,6	$1,\!9$	3471	$9,\!6$	0,9
923	18,3	$0,\!6$	2665	6,1	$1,\!2$	3478	8,9	1,1
975	$34,\!3$	3,4	2786	22,2	2,2	3479	$2,\!9$	1,7
996	$11,\!9$	0,8	2880	6,4	1,1	3483	$14,\!5$	1,1
1015	$9,\!6$	1,1	2881	8,0	$1,\!2$	3489	2,7	$1,\!8$
1032	$37,\! 6$	3,8	3096	6,2	$1,\!3$	3521	$4,\!9$	1,1
1039	4,7	$_{0,0}$	3179	5,0	1,1	3523	$_{3,9}$	$1,\!5$
1095	2,1	2,4	3315	$38,\! 6$	24,2	3524	20,4	2,0
1101	20,0	0,9	3326	$21,\!6$	2,2	3526	$9,\!9$	$1,\!0$
1122	32,3	3,2	3331	32,1	3,2	3528	4,8	$1,\!5$
1124	$5,\!6$	3,2	3404	2,7	1,7	3537	3,6	$1,\!6$

Tabela A.10: Dados de rotação para as Plêiades

Iat	Tabela A.11. Continuação dos audos de Totação para as 1 terdaes							
WEBDA	$V \sin i$	$\delta V \sin i$	WEBDA	$V \sin i$	$\delta V \sin i$	WEBDA	$V \sin i$	$\delta V \sin i$
3540	11,7	1,2	5015	6,5	1,1	5078	2,3	1,5
3542	5,1	$1,\!3$	5020	4,3	3,6	5082	2,7	2,7
3543	4,7	1,2	5026	6,1	3,2	5087	26,3	4,2
3546	$17,\!8$	0,9	5040	8,5	0,9	5098	5,3	1,2
3551	5,5	1,5	5042	$16,\! 6$	0,9	5104	8,1	$1,\!0$
3573	$37,\!8$	3,8	5048	4,1	1,1	5105	1,5	2,0
3574	58,9	6,9	5060	2,3	1,7	5109	1,1	$0,\!0$
5012	10,9	0,9	5067	$_{9,3}$	0,9			
5013	6,6	$1,\!0$	5068	$_{3,6}$	1,7			

Tabela A.11: Continuação dos dados de rotação para as Plêiades

Referências Bibliográficas

- SLETTEBAK, A. Determination of stellar rotational velocities. In: IAU SYMPOSIUM, 111., 1985, COMO, ITALY. Proceedings... Reidel Publishing Company, Dordrecht, 1983, p. 163.
- [2] VAN BELLE, G. T. et al. Altair's Oblateness and Rotation Velocity from Long-Baseline Interferometry. ApJ, v. 559, p. 1155, 2001.
- [3] STRUVE, O.; ELVEY, C. T. Algol and stellar rotation. Monthly Notices of the Royal Astronomical Society, v. 91, p.663, 1931.
- [4] GIURICIN, G.; MARDIROSSIAN, F.; MEZZETTI, M. Synchronization in early-type spectroscopic binary stars. A&A, v. 135, p. 393, 1984.
- [5] TASSOUL, J. -L.; TASSOUL, M. A comparative study of synchronization and circularization in close binaries. *ApJ*, v. 395, p. 295, 1992.
- [6] LEVENHAGEN, R. S.; KÜNZEL, R A rotação estelar e seus efeitos sobre os espectros. *Revista Brasileira de Ensino de Física*, v. 30, n. 4, p. 4701, 2008.
- [7] CHANDRASEKHAR, S.; MUNCH, G. On the Integral Equation Governing the Distribution of the True and the Apparent Rotational Velocities of Stars. ApJ, v. 111, p. 142, 1950.
- [8] BURKI, G. Formation of open clusters. In: IAU SYMPOSIUM, 85., 1979, VICTORIA, B.C., CANADA. Proceedings... Reidel Publishing Company: Dordrecht, 1980, p. 27-30.
- [9] VANT VEER, F. The age of the W Ursae Majoris stars. A&A, v. 44, p. 437, 1975.
- [10] JACKSON, R. J.; JEFFRIES, R. D. Are the spin axes of stars randomly aligned within a cluster? MNRAS v. 402, p. 1380, 2010.
- [11] KOENIGL, A. Disk accretion onto magnetic T Tauri stars. ApJ, v. 370, p. L39, p. 1991
- [12] SHU, F.; NAJITA, J.; OSTRIKER, E. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model. ApJ, v. 429, p. 791, 1994.
- [13] SIESS, L.; LIVIO, M. The accretion of brown dwarfs and planets by giant stars - II. Solar-mass stars on the red giant branch. MNRAS, v. 304, p. 925, 1999.

- [14] SPADA, F. et al. Modelling the rotational evolution of solar-like stars: the rotational coupling time-scale. MNRAS, v. 416(1), p. 447, 2011.
- [15] BROWN, A. The Rotational Velocities of Groups of Stars, as Determined from the Apparent Rotational Velocities. ApJ, v. 111, p. 366, 1950.
- [16] GAIGÉ, Y. Stellar rotational velocities from the V sin i observations -Inversion procedures and applications to open clusters. A&A, v. 269, p. 267, 1993.
- [17] FUKUDA, I. A statistical study of rotational velocities of the stars. PASP, v. 94, p. 271, 1982.
- [18] GUTHRIE, B. N. G. The bimodal distribution of rotational velocities of late B-type stars in galactic clusters. *MNRAS*, v. 198, p. 795, 1982.
- [19] SOARES, B. B.; CARVALHO, J. C.; DO NASCIMENTO JR., J. D.; DE MEDEIROS, J. R. Tsallis maximum entropy distribution function for stellar rotational velocities in the Pleiades. *Physica A*, v. 364, p. 413, 2006.
- [20] CARVALHO, J. C.; SILVA, R.; DO NASCIMENTO JR, J. D.; DE MEDEIROS, J. R. Power law statistics and stellar rotational velocities in the Pleiades. *Europhysics Letters*, v. 84, p. 59001, 2008.
- [21] CARVALHO, J. C.; DO NASCIMENTO JR, J. D.; SILVA, R.; DE MEDEIROS, J. R. Non-Gaussian Statistics and Stellar Rotational Velocities of Main-Sequence Field Stars. *ApJ*, v. 696, p. 48, 2009.
- [22] CARVALHO, J. C.; SILVA, R.; SOARES, B. B.; DE MEDEIROS, J. R. Observational measurement of open stellar clusters: A test of Kaniadakis and Tsallis statistics. *Europhysics Letters*, v. 91, p. 69002, 2010.
- [23] SOARES, B. B.; SILVA, J. R. P. On the rotation of ONC stars in the Tsallis formalism context *Europhysics Letter*, v. 96, p. 19001, 2011.
- [24] DEUTSCH, A. J. The magnetic and related stars, Baltimore: Mono Book Corp., 1967. p. 181
- [25] MERMILLIOD, J.-C.; GRENON, M.; MAYOR, M. Membership, binarity, and rotation of red dwarfs in the nearby open cluster Coma Berenices (Melotte 111). A&A, v. 491, p. 951, 2008.
- [26] MERMILLIOD, J.-C.; MAYOR, M.; UDRY, S. Catalogues of radial and rotational velocities of 1253 F-K dwarfs in 13 nearby open clusters. A&A, v. 498, p. 949, 2009.
- [27] BARANNE, A. et al. CORAVEL A new tool for radial velocity measurements. A&A 498 (1979) 949.
- [28] BENZ, W.; MAYOR, M. A new method for determining the rotation of late spectral type stars. A&A, v. 93, p. 235, 1981.
- [29] BENZ, W.; MAYOR, M., Photoelectric rotational velocities of late-type dwarfs. A&A, v. 138, p. 183, 1984.

- [30] Cox, A. N. Allen's Astrophysical Quantities, Londres: Springer, 2000. p.390.
- [31] ZAHN, J.-P. Tidal friction in close binary stars. A&A, v. 57, p. 383, 1977.
- [32] MAYOR, M.; MERMILLIOD, J.-C. Rotational velocities of stars in open clusters; a time-dependece revisited. In: S. Catalano; J. R. Stauffer. Angular Momentum Evolution of Young Stars. 1 ed. Holanda: Kluwer Academic Publishers, 1991. cap 2. p. 143
- [33] QUELOZ, D. et al. The rotational velocity of low-mass stars in the Pleiades cluster. A&A, v. 335, p. 183, 1998.
- [34] BOUVIER, J.; FORESTINI, M.; ALLAIN, S. The angular momentum evolution of low-mass stars. $A \mathscr{C} A$, v. 326, p. 1023, 1997.
- [35] BOUVIER, J. Lithium depletion and the rotational history of exoplanet host stars. A&A, v. 489, p. 53, 2008.
- [36] DE MEDEIROS, J. R.; DA SILVA, J. R. P.; MAIA, M. R. G. The Rotation of Binary Systems with Evolved Components. ApJ, v. 578, p. 943, 2002.
- [37] KHARCHENKO, N. V. et al. Astrophysical parameters of Galactic open clusters. A&A, v. 438, p. 1163, 2005.
- [38] QIN, YI-PING et al. A statistical method for testing assumed distributions of sources. A&AS, v. 132, p. 301, 1998.
- [39] BARNES, S. A. et al. Rotation Periods of Late-Type Stars in the Young Open Cluster IC 2602. ApJ, v. 516, p. 263, 1999.
- [40] SKUMANICH, A. Time Scales for CA II Emission Decay, Rotational Braking, and Lithium Depletion. ApJ, v. 171, p. 565, 1972.
- [41] COLLIER-CAMERON, A. *et al.* The main-sequence rotation-colour relation in the Coma Berenices open cluster. *MNRAS*, v. 400, p. 451, 2009.
- [42] SCHOLZ, A. et al. Rotation periods for very low mass stars in Praesepe. MNRAS, v. 413, p. 259, 2011.
- [43] GIARDINO, G.; PILLITTERI, I.; MICELA, G. The X-ray luminosity of solar-mass stars in the intermediate age open cluster NGC 752. A&A, v. 490, p. 113, 2008.
- [44] BENZ, W.; MAYOR, M.; MERMILLIOD, J.-C. Rotational studies of lower main sequence stars in nearby open galactic clusters. I - Velocity distributions and age dependence. A&A, v. 138, p. 93, 1984.
- [45] STAUFFER, J. R.; HARTMANN, L. W. The distribution of rotational velocities for low-mass stars in the Pleiades. *ApJ*, v. 318, p. 337, 1987.
- [46] ENDAL, A. S.; SOFIA, S. The evolution of rotating stars. II Calculations with time-dependent redistribution of angular momentum for 7- and 10-solar-mass stars. ApJ, v. 220, p. 279, 1978.

- [47] MACGREGOR, K. B.; BRENNER, M. Rotational evolution of solar-type stars. I - Main-sequence evolution. ApJ, v. 376, p. 204, 1991.
- [48] IRWIN, J.; BOUVIER, J. The rotational evolution of low-mass stars. In: IAU SYMPOSIUM, 258., 2009, BALTIMORE, MARYLAND, USA. Proceedings... Cambridge, Reino Unido: Cambridge University Press, 2008, p. 363-374.
- [49] BARTAŠIŪTĖ, S. *et al.* Multicolor CCD photometry of the open cluster NGC 752. In: IAU SYMPOSIUM, 258., 2009, BALTIMORE, MARYLAND, USA. Proceedings... Cambridge, Reino Unido: Cambridge University Press, 2008, p. 361-363.
- [50] TSALLIS, C., Possible Generalization of Boltzmann-Gibbs Statistics. Journal of Statistical Physics, v. 52, p. 479, 1988.
- [51] FRANCIC, S.P. Mass functions for eight nearby galactic clusters. AJ, v. 98, p. 888, 1989.